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In [i, 2] a method, based on the scaling hypothesis (SH), is proposed for describing 
developed isotropic grid turbulence. In this method the perturbations of the velocity field 
in the energy-containing and inertial intervals are described by universal spectral func- 
tions. The dependence on the distance x to the grid is completely determined by only two 
quantities, which can be termed secular: The average rate of dissipation of energy <e> and 
the correlation radius (the integral scale) of turbulence r c. In particular, for the com- 
ponents of the tensor 

Fii - -  (2~) -8 S <ui(x) uj (x + r) ) exp (--ikr) dr = P i ~ f  (1)  

this dependence is given by the relation 

TV(k, x) = r~+2q)(kr~), k<< 1. (2)  

Here Pi~ = 5ij - OiOj; 0i = ki/k; k = Ikl; F = Fii; ~ ~ 5/3 is the spectral index; the over- 
bar indlcates that the quantity has been made dimensionless with the help of the Kolmogorov 
length scale r d = (n3/<e>) I/4 and time scale t d = (n/<e>)i/=; N is the coefficient of kine- 
matic viscosity; and, �9 is a universal function. In the inertial interval, where kr c >> i, 
the function ~ has the asymptote (Cl/4~)(krc)-11/s, which corresponds to the well-known ex- 
pression for the spectral energy density E(k) = C1<e>=/3k -sl3 [3] (C I is Kolmogorov's con- 

stant). 

This approach makes it possible to calculate the dependence of allturbulence parameters 
on x. In particular, for C I we obtain, using the scale dimension -~/2 of the field e, 

r / x  - -  xo\l-n]~ 
c,N L R e , , i T ) 1 ,  (3) 

where Re M - UM/q; M is the cell size of the grid; n : 48/(40 - 3~) " 1.2 is the damping ex- 
ponent of the intensity of turbulence; and, = = 2~/(8 - 3D). 

In extending this method to the case of anisotropic turbulence, there first arises the 
problem of describing the dependence of the spectral tensors on the orientation ~ of the wave 
vector. Correspondingly, additional secular quantities charaeterizing the anisotropy must 
be added to the parameters <e> and r c. For example, the components of the Reynolds tensor 
<uiuj> [4, 5] as well as the tensor obtained from Fij by ingrating over all possible values 
of ~ are used for the secular quantities [6]. In so doing, the parameterization of the spec- 
tral tensors is performed directly, but there arises a functional arbitrariness associated 
with the determination of the form of the scalar functions. This arbitrariness can be elim- 
inated by linearization only if the anisotropy is weak. 

This problem can be approached from a different standpoint. There has now been accumu- 
lated a large volume of data [7, 8] indicating absence of isotropy not only in the energy- 
containing, but also in the inertial interval of wave numbers of anisotropic turbulence. At 
the same time, both the longitudinal and transverse spectra, which are substantially differ- 
ent from the standpoint of their orientational structure, exhibit sections where the "5/3 
law" is satisfied. These two facts are compatible only when in the inertial interval the 
dependences of the spectral functions on k and ~ can be factored. Since, however, on the 
basis of the scaling hypothesis all long-wavelength disturbances can be described in a uni- 
fied manner, the factorization should also be preserved in the energy-containing interval. 
As a result, the following relations, which extend the formulas~i(1) and (2) to the anisotrop- 
ic case, can be proposed: 
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7~ +2 "hr Fij(x,  k ) = / i j ( x ,  0) ~(  " c), k < < t ,  ( 4 )  

and analogous relations for the spectral functions of higher order. 

Some consequences of Eq. (4) can be checked directly. Thus, for example, with its help 
it is easy to derive formulas for the Kolmogorov constants C i. and CI a appearing in the ex- 
pressions for the one-dimensional cross and complete spectra ~f anisotropic turbulence in 
the inertial interval [8]: 

C 1 

0 0 0 0 

A c c o r d i n g  t o  Eq. ( 5 ) ,  C i j  depend  on f i j ,  and h e n c e  t h e y  a r e  f u n c t i o n s  o f  t h e  a n i s o t r o p y  p a -  
r a m e t e r s .  The form of these functions is most easily specified for the example of axisym- 
metric turbulence, for which the parameterization of the tensor fj is performed using only 
8 and the unit vector n, direct along the flow [9, i0]: 

]ij = P i z P j m ( Y 1 6 t m + ? 2 n l n m ) ,  Vi = ?~(x, x), x = (n, O). 

In [i0], where axisymmetric turbulence was calculated numerically on the basis of the 
DIA model, it is shown that to a first approximation (which in any case is "energetically 
consistent") the dependence of the quantities Yi on K can be neglected. On the basis of 
such an approximation the integrals in the formulas (5) can be calculated directly: 

i , (8) C~ = (,~ + "V '~) Q" 
In the isotropic case, when fij = Pij, 71 = i, and ~2 = 0, the well-known relations of 

[3] for the constants for the longitudinal (C2) and transverse (C2') spectra follow from 
Eqs. (6)-(8): C2 = 2Cii = 18Ci/55, C=' = 2C22 = 24CI/55. 

The functions Yi can be expressed in terms of the components of the Reynolds tensor. 
Indeed, integrating Eq. (4) over all k and taking into account the fact that the long-wave- 
length region makes the main contribution to the integral, we obtain 

i 

where  ~ = S y 2 ~ ( y ) d y  i s  t h e  s t r u c t u r e  c o n s t a n t .  From h e r e  i t  f o l l o w s  t h a t  
9 

72/71 = i0 (<Ul 2 ) -- (U22>) / (8(U22) -- (UI2>), (9) 

where the index 1 corresponds to the axis oriented along the flow. 

With the help of Eq. (9) it is easy to derive from Eqs. (6)-(8) formulas relating the 
values of the different Kolmogorov constants in the anisotropic case. In particular, 

C2 3 I + t90z/119 
~= 4 1--65z/68 " (10)  

He re  t h e  p a r a m e t e r  z = (<uz2> - <u2~>) / (<u12>  + 2<u22>) c h a r a c t e r i z e s  t h e  d e g r e e  o f  a n i s o t -  
r o p y .  As z + 0 t h e  f o r m u l a  (10)  g i v e s  t h e  w e l l - k n o w n  r e s u l t  C 2 = 3 C 2 ' / 4 .  I t  a l s o  q u a l i -  
t a t i v e l y  a g r e e s  w i t h  t h e  d a t a  o f  [ 1 1 ] ,  whe re  t h e  s p e c t r a  o f  t h e  s u b s t a n t i a l l y  n o n i s o t r o p i c  
grid turbulence were investigated: The values of the constants of the transverse spectrum 
were found to be lower than in the isotropic case. 

Further predictions can be made by assuming that the Ko!mogorov constants of the full 
spectra of isotropic turbulence are the same as those of anisotropic turbulence. This is 
equivalent to the assumption that the dependence of the total energy <u2>/2 on x is deter- 
mined only by the quantities <~> and r c in the case of anisotropic turbulence also. This 
assumption, as follows from Eq. (8), leads to the additional relation 
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?i+72~ = i .  ( 1 1 )  

The f o r m u l a s  (9 )  and (11)  c o m p l e t e l y  s p e c i f y  t h e  d e p e n d e n c e  o f  Yi on z .  The r e l a t i o n s  (6 )  
and (7 )  can  be  p u t  i n t o  t h e  fo rm 

t 

C2 ~ 55 C 2 t90z ~ ,  55 C2 = t - -  65z (12)  
18 C 1 I + I - ~ ;  2 ~  24 C 1 -~" 

The p a r a m e t e r  z v a r i e s  f r o m  - 1 / 2  t o  1, and C2 and C2'  v a r y  o v e r  t h e  i n t e r v a l s  [ 2 4 / 1 1 9 ,  309/  
119] and [ 2 0 1 / 1 3 6 , 3 / 6 8 ] ,  r e s p e c t i v e l y .  

At first glance, such large ranges for the values of the "constants" C are inconsistent 
with the experimental data. It should be kept in mind, however, that the range of the ex- 
perimentally achieved values of z is relatively small: from 0 to 0.12. According to Eq. 
(2) this results in variations of the order of 18% in C 2 and 12% in C='. These variations 
fall within the known spread in the experimental data. 

It is important to note that this spread occurs even in flows with approximately the 
same Reynolds number Re [12]. Therefore, it cannot be explained only with the help of the 
formula (3). In this respect the results of [13] are instructive. In [13], where the ex- 
periments of Kistler and Vrebalovich [ii] were "repeated," the same range of values of Re 
were significantly smaller. The corresponding numerical values C= = 0.65, z = 0.12 and C2 = 
0.48 • 0.06, z = 0.02 are in good agreement with the calculation based on the formula (12). 

The dependence of C= on the degree of anisotropy is also indirectly confirmed by inves- 
tigations of geophysical flows, in particular, in [14] it was found, in a study of the atmos- 
pheric layer near the ground, that C2 increases as the distance to the surface decreases. 

In conclusion, we note that, strictly speaking, the dependence of the functions Yi and 
K cannot always be neglected, since Kramers' theorem gives additional restrictions on the 
form of these functions. Using the data of [15], we shall write the restrictions in the 
form 

71 i>0, 71+73~0- 

Substituting into these formulas the explicit expressions for Yi, we have 

8 (u2 2 > > /  <ul 2 > ~ 2 (u2 2 >/9. 

The i n e q u a l i t y  (13)  e s t a b l i s h e s  t h e  r e g i o n  o f  a p p l i c a b i l i t y  o f  t h e  o b t a i n e d  r e s u l t s .  

(13) 
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